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ABSTRACT

The double spherical harmonics angular approximationerdtvest order, i.e. doubleyRDPy),

is developed for the solution of time-dependent non-elopiilim grey radiative transfer problems
in planar geometry. The standarg &gular approximation represents the angular dependénce o
the radiation specific intensity using a linear functionha aingular domair-1 < p<1.In
contrast, the Dfangular approximation represents the angular dependesriseteopic in each
half angular range-1 < pu < 0 and O< p < 1. Neglecting the time derivative of the radiation flux,
both the R and DR equations can be written as a single diffusion equationferadiation

energy density. Although the @Rliffusion approximation is expected to be less accurate the
P1 diffusion approximation at and near thermodynamic equiiin, the DR angular
approximation can more accurately capture the complicatedlar dependence near the
non-equilibrium wave front. We develop an adaptive angidanhnique that locally uses either the
DPy or the R diffusion approximation depending on the degree to whigré#diation and

material fields are in thermodynamic equilibrium. Numerresults are presented for a test
problem due to Su and Olson for which a semi-analytic trartgmbution exists. The numerical
results demonstrate that the adaptiyeHPy diffusion approximation can yield improvements in
accuracy over the standarg éiffusion approximation for non-equilibrium grey radiagitransfer.

KEYWORDS : radiative transfer, non-equilibrium radiation diffusicspherical harmonics
approximation, double spherical harmonics approximation

1. INTRODUCTION

Time-dependent non-equilibrium radiative transfer peotd in the transport description are
challenging to solve numerically. As a result, low-ordenepcal harmonics angular
approximations have been examined as less expensive catiopal alternatives [1]. The
standard Pangular approximation represents the angular dependémice adiation specific
intensity at each point in space and time using a linear fonéh the angular domain

—1< u<1]2]. Thus, there are two angular moment unknowns, the tiadi@nergy density
(proportional to the zeroth moment) and the radiation flustfnoment), at each point in space
and time. Under the assumption that the time derivative®f#diation flux is negligible, the two



equations for the angular moment unknowns can be combitea isingle R diffusion equation
for the radiation energy density. An equation for the endrgiance of the background material
through which the radiation is propagating and with whidls gxchanging energy is also
required.

In contrast, the doublegRDPy) angular approximation represents the angular dependsrtice
radiation specific intensity as isotropic (constant) intelaalf angular range-1 < p< 0 and

0 < pu <1, again resulting in two (half-range) angular moment unkm®at each point in space
and time [2]. The DR approximation of the radiation specific intensity can bettemni in a form
that differs from the IPexpression only in the linearly angular component [3—5]e Tésulting
DPy diffusion approximation (under the assumption of a negliegradiation flux time derivative)
differs from the R diffusion approximation only in the definition of the diffia® coefficient. The
DPyg diffusion approximation can be incorporated into a nond@zpium planar geometry grey
radiation diffusion code with only minor modifications.

As pointed out by Olson et al [1], the angular dependencee$gecific intensity near a radiation
wave front is complicated. The sharp radiation wave frontaet as an internal boundary that is
difficult for the P, angular approximation to accurately model. At an intermalridary, the
angular distribution of the specific intensity can be nedrbcontinuous when viewed as a
function of angle. Brantley [5] has recently investigatied &pplication of a mixedPDPy

angular approximation for more accurately treating maténterfaces for time-independent
planar geometry neutronics problems. In this paper, westiyate the application of the QP
angular approximation to more accurately model the angldpendence of the radiation specific
intensity near a wave front for non-equilibrium grey ratatransfer problems. Numerical
results from a test problem proposed by Su and Olson [6] fochvé semi-analytic transport
solution is available demonstrates that they[dFfusion approximation can produce more
accurate results than the Biffusion approximation when the radiation and material ant of
equilibrium.

When the radiation and material energies reach thermodyreguilibrium, however, the
radiative transfer and material energy balance equatisyraptotically limit to first order to the
equilibrium R diffusion approximation [7]. Under these conditions, thegiffusion
approximation gives an equation with a different (incotyeiffusion coefficient. As such, we
expect the DR diffusion approximation to be less accurate than thdifusion approximation in
and near thermodynamic equilibrium.

These physical and theoretical considerations motivitedévelopment of an angularly adaptive
P1-DPy diffusion approximation that is designed to use the mositirate angular approximation
(either DR or Pp) at any given point in space and time. The adaptivity cioers simple,
physically-based, and essentially prescribes the useeddB diffusion approximation when the
radiation and material energy fields are away from thermadya equilibrium and the use of the
P1 diffusion approximation when the radiation and materiargy fields are in or near
equilibrium. Numerical results from the Su and Olson teebfgm are presented to demonstrate
that this adaptive angular approximation can yield ovexratiuracy improvements.

The remainder of this paper is organized as follows. In $a@i we briefly outline the
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derivations of the Pand DR diffusion approximations for the case of non-equilibriureyy
radiative transfer. We then describe how these two angplaioximations can be readily
combined into a single set of equations with a single paranatowing the selection of the;Pr
the DR approximation. We conclude Section 2 with a descriptiorhefangularly adaptive
P1-DPy diffusion approximation. In Section 3, we comparg BPy, and adaptive RDPy
diffusion numerical results for the Su and Olson test pnobhgth the semi-analytic transport
solution. Finally, we offer concluding remarks and sugigest for future work in Section 4.

2. DERIVATIONS OF THE P 1, DPy, AND ADAPTIVE P 1-DPg DIFFUSION
APPROXIMATIONS

In this section, we briefly outline the derivations of theddd DR diffusion approximations for
the case of non-equilibrium grey radiative transfer in plagieometry. We focus the description
of the derivations on contrasting the two angular approkiona. \We then demonstrate how the
two angular approximations can be combined into a singlefssfuations with a single
parameter allowing the selection of thed the DR approximation. Finally, we theoretically
motivate and describe a method for adaptively selectindpited angular approximation based on
the degree to which the radiation and material energy defisitls are in thermodynamic
equilibrium.

In the following, we assume that hydrodynamic motion and headuction can be neglected,
that scattering is isotropic, and that the background riztsrin local thermodynamic
equilibrium. Under these assumptions, the equation of-tiegendent grey radiative transfer in a
one-dimensional planar geometry mediurd & < L with space- and temperature-dependent
opacities is given by [8]

10l al 1 1 +1 1
4 p—+ofl == T4—/I’—
cat+uax+0t Zawa m+20—5. 9 du-l—ZS,
O<x<L, -1<p<l,t>0, (1)
coupled with the material energy balance equation
T +1
cvaa—tm:oa / |dp—acTrﬁ} L0<x<L,t>0, )
-1

wherex, p, andt are the space, angular direction, and time variables, c&sphy; | (X, |, t)
[energy/area-timpdenotes the specific intensity of radiatidiy (X, t) [temperaturgis the
material temperatures, (X, Tm), Os(X, Tm), andog (X, Tm) [lengthr ] are the absorption,
scattering, and total opacities, respectively, at mdtemaperaturé, (x,t); S(x,t)
[energy/volume-tinjas an isotropic source of radiationlength/timéis the speed of lightin a
vacuum:a [energy/temperatufevolumg is the radiation constant; ar@@ (x, Tr,)
[energy/temperature-volurhis the material heat capacity. The initial and boundaryditbons
for Egs. 1 and 2 are given by

(X, 1,0)=lp(x,1) , 0<x<L, -1<p<1, (3)

Tm(X0)=To(x) , 0<x<L, 4)
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1 (O,ut)=To(kt) , O<pu<l, t>0, (5)

I(Liwt) =TL(wt) , -1<p<0,t>0, (6)

wherelg andTy are the prescribed initial data ahd andl"| are the prescribed boundary data.
In preparation for deriving the;Rand DR diffusion approximations to Egs. 1-6, we first define

two angular moments of the radiation specific intensity. Z&@th angular moment of the
specific intensity is the radiation energy denéitfx, t) [energy/volumlgiven by

1
E(x,t):%/+1 (X, t)du . (7)

The first angular moment of the specific intensity is the ramleflux F (x,t) [energy/area-time
given by
+1
Foct) = [ Wk du. (8)

In terms of the radiation energy density, the material gnbedance equation is given by

Q%:coa(E—aTn‘q‘) , 0<x<L,t>0. (9)

2.1. Derivation of the P, Diffusion Approximation

In this section, we briefly outline the derivation of thed#ffusion approximation. TheP
representation of the radiation specific intensity forxalhdt is given by [2]

(B = SE () + SHF (1), ~1<p<l. (10)

Both E (x,t) andF (x,t) are continuous functions of space and time, so theepresentation of
the specific intensity is linearly anisotropic in angle amdontinuous in space, angle, and time.
To obtain equations for the unknowBgx,t) andF (x,t), we insert Eqg. 10 into Eq. 1 and
integrate the result overl < p < 1 to obtain the radiation energy balance equation

10E 10F 2 1
——+—-——+03E=a0,T,+-S, O<x<L, t>0. 11
Cat+CaX+ a am+c 9 9 ( )

Next, we insert Eqg. 10 into Eq. 1, multiply the resultjnyand integrate over1 < pu < 1 to obtain

10F coOE
—ar T3 TOF=0, 0<x<L,t>0. (12)

Egs. 11 and 12, coupled with the material energy balancetiegugiven by Eq. 9, constitute the
P1 approximation for grey radiative transfer (along with @sponding initial and boundary
conditions).
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To obtain the P diffusionapproximation, we make the further assumption that the tierevative
of the radiation flux is negligible. Using this assumptiorkiq. 12, the radiation flux is given by
__COE

30t 0X

, O<x<L,t>0. (13)

Then Egs. 11 and 13 can be combined into a single equatiohdaatiation energy density
given by

10E 0 1 0E 41

S ——— +0E=ao T+~ L, t . 14

oot ax3otax+0a a0y m+CS, O<x<L,t>0 (14)
Eq. 14 for the radiation energy density, coupled with theemak energy balance equation Eq. 9
for the material temperature, constitutes thelffusion approximation for grey radiative transfer.

We now turn to the specification of initial and boundary caiodis. Initial conditions foiE (x,t)
andF (x,t) are easily derived from Eq. 3 by successive angular momé&griations analogous to
the above to obtain

1 +1
E(x,O):Eo(x):E/1 lo(x,pdp, 0<x<L , (15)
+1
F(x,0)=Fy(X) = /_1 Mo (X, )dp , 0<x<L . (16)

Although there is some ambiguity surrounding which is thestaacurate boundary condition for
a Ry approximation [9], we focus on the widely-used Marshak oinglboundary condition.

This boundary condition is obtained ¢at= 0 for example) by inserting the; Pepresentation for
the radiation specific intensity Eqg. 10 into the equation

1
/0 il (O,ut) —Fo(wt)]dpu=0, (17)
and performing the angular integrations to obtain

EE-i—}F—/l Mod (18)
4 2" = Jo M oGl .

Inserting the expression for the Radiation flux given by Eq. 13, we obtain the Marshak
boundary condition at = O for the R diffusion approximation

c 1 0E

1
21E—6—0t&:/0 Wrody . (19)

An analogous boundary condition holdsxat L. The R diffusion approximation for
non-equilibrium grey radiative transfer problems is noWyfspecified by Eqgs. 14, 15, and 19,
coupled with the material energy balance equation givendpy9Eand its initial condition given
by Eq. 4.
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2.2. Derivation of the DRy Diffusion Approximation

In this section, we briefly outline the derivation of the dmuk, diffusion approximation. The
DP, representation of the radiation specific intensity foixalhdt is given by [2]

_[1f(xt), O0<p<1,
l(x’u’t)_{l‘(x,t) , —1<u<0, (20)
wherel *(x,t) andl ~(x,t) are continuous functions of space and time. Thus, the DP
representation of the specific intensity is isotropic inlarig each of the half angular ranges
—1<p<0andO< pu<1andis continuous in space and time but potentially discaous in
angle. Using Eq. 20 in Egs. 7 and 8 [5], we find tBa,t) = 1 [I*(x,t) +1~(x,t)] and
F(xt) = % [17(x,t) —17(x,1)]. After algebraic manipulation, we can rewrite Eq. 20 as

I(x,u,t):gE(x,t)-i—gf(u)F(x,t) , —l<p<1l, 21)

where the functiorf (p) is defined as

_[+5, O<u<1,

Comparing Eqg. 21 to Eq. 10, the Bnd DR angular representations of the radiation specific
intensity differ only in the linear component.

To obtain equations for the unknowBgx,t) andF (x,t), we first insert Eq. 21 into Eq. 1 and
integrate the result overl < pu < 1 to obtain the radiation energy balance equation given by
Eg. 11. Next, we insert Eq. 21 into Eq. 1, multiply the resyitflip), and integrate over
—1<u<1toobtain

10F coOE
ot Tag TOF =0, 0<x<L,t>0. (23)

Egs. 11 and 23, coupled with the material energy balancetieguag. 9, constitute the QP
angular approximation for grey radiative transfer (alonthworresponding initial and boundary
conditions).

To obtain the DR diffusionapproximation, we make the further assumption that the time
derivative of the radiation flux is negligible. Using thissasption in Eq. 23, the radiation flux is
given by
c OE
40t 0X
Then Egs. 11 and 24 can be combined into a single equatiohdaatiation energy density
given by

, O<x<L,t>0. (24)

10E 0 1 0E , 1
2B 9 2O G E—ao,Té4+-S, O<x<L ,t>0. 25
C ot oxao ox | 0a- T ¥0almt S, DeX<L, b= (25)
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Eq. 25 for the radiation energy density, coupled with theemat energy balance equation Eq. 9
for the material temperature, constitutes thedRfusion approximation for grey radiative
transfer. Comparing Egs. 14 and 25, they@IRfusion approximation clearly differs from the P
diffusion approximation only in the definition of the diffias coefficient.

We now specify the initial and boundary conditions for they[@Rfusion approximation. Initial
conditions forE (x,t) andF (x,t) for the DRy approximation are the same as for the P
approximation and are given by Egs. 15 and 16. The Marshakdayy condition ak = 0 is
obtained by substituting the [@FPepresentation for the radiation specific intensity, Eq.i2tb
Eq. 17 and performing the angular integrations to againiolitg. 18. Inserting the
representation for the RRadiation flux given by Eq. 24, we obtain the Marshak boundary
condition atx = O for the DR diffusion approximation

1
EE—ia—E:/ Wrody . (26)
JO

4 80 0X
An analogous boundary condition holdsxat L. The DR diffusion approximation for
non-equilibrium grey radiative transfer problems is noWyfspecified by Eqgs. 25, 15, and 26,
coupled with the material energy balance equation givendpyEand its initial condition given
by Eq. 4. We note that the @Rliffusion approximation is only trivially different in fon than the
Pz diffusion approximation.

2.3. The Adaptive R-DPg Diffusion Approximation

In this section, we describe how the &#d DR diffusion approximations for non-equilibrium
grey radiative transfer in planar geometry can be combintxa single set of equations with a
single parameter specifying the local angular approxiomatiVe then theoretically motivate and
describe a method for adaptively selecting the local amgydproximation based on the degree to
which the radiation and material energy density fields ate@nmodynamic equilibrium.

Recalling that the only difference between the form of the agproximations is in the diffusion
coefficient, we define a generalized diffusion coefficient as

1
Dt Tm) = M X Do T @7

where the multiplier functioM (x;t) is given by
M(xt) = g[l—é(x,t)]-l—é(x,t) . (28)

Then choosin®(x,t) = 1 at a giverx andt yields the i form of the diffusion coefficient and
d(x,t) = 0 yields the Dig form.

The arbitrary P-DPg radiation diffusion approximation is then fully specifiesl a
1060 0F
cot ox o0x
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with the initial condition

1 +1
E(X,O):Eo(x):e/_l lo(x,Wydp , 0<x<L (30)

and the Marshak boundary conditionkat 0

c 1 0E 1

21E—éD(o,t,Tm)&_/0 Wrody . (31)
An analogous boundary condition existxat L, and these equations are coupled to the material
energy balance equation given by Eq. 9 along with its in@gaidition Eq. 4. The desired angular
approximation at any space and time point can be easily cHosthe appropriate selection of
o(x,t).

When the radiation and material energies reach thermodygrequilibrium, the radiative transfer
and material energy balance equations asymptotically tmfirst order to the equilibrium P
diffusion approximation [7]. Under these conditions, theyiffusion approximation gives an
equation with a different (incorrect) diffusion coeffictels such, we expect the QRliffusion
approximation to be less accurate than the#fusion approximation at and near
thermodynamic equilibrium. However, we hypothesize thatDR angular approximation can
more accurately capture the behavior of the radiation fipectensity than the Pangular
approximation when the radiation and material energy defisids are out of equilibrium.
Motivated by these considerations, we propose an “add@@® Py diffusion approximation in
which the value of the paramet&(x,t) for eachx andt is chosen according to the criterion

sxt)={ 2 e ~U<B. (32)
0 , otherwise,

whereEn, (x,t) [energy/volumEs the material energy density and we have u8ed0.1 in our
simulations. This prescription fdr(x,t) ensures that the;Rngular approximation is used at and
near thermodynamic equilibrium [wheEg(x,t) ~ En (x,t)] and that the DR angular
approximation is used otherwise.

3. NUMERICAL RESULTS

In the previous section, we derived thedhd DR diffusion approximations for the case of
non-equilibrium grey radiative transfer in planar geomei¥e showed that the;Rand DR
diffusion approximations differ only in the definition ofdldiffusion coefficient. As a result,
these approximations can be easily combined into one sejuatt®ns with a single parameter
specifying the desired angular approximation. Finally,described a simple, physically-based
technique for adaptively choosing the local angular appnakion at each point in space and
time.

We have numerically implemented the angularly adaptix®Py diffusion approximation using
the spatial and temporal discretizations described ineafse [10]. In particular, the radiation
diffusion and material energy balance equations are dlyafiacretized using a second-order
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cell-centered differencing and temporally discretizegligitly using backward Euler
differencing. The material properties are treated exgbfian time. No iteration on the
temperature dependence of the material properties isrpeefy so extremely small timesteps are
used to obtain the numerical results.

In this section, we describe the Su and Olson semi-analgtichimark problem for which a
semi-analytic transport solution exists [6]. Then we apghl/R, DPy, and adaptive RDPy
diffusion approximations to the numerical solution of thisblem.

3.1. Description of the Su and Olson Benchmark Problem

To linearize the radiative transfer equation and the malteriergy balance equation such that a
semi-analytic solution can be obtained, Su and Olson [6]eak major assumptions: the
material opacities are constant (independent of the nahtemperature) and the heat capacity of
the material is proportional to the cube of the material terapureC, = (XT,%. While not

physically realistic, these assumptions make the equatbradiative transfer linear and allow
their semi-analytic solution.

Su and Olson write the radiative transfer equation and themahenergy balance equation in
dimensionless forms as follows. The spatial variatilewritten in terms of the dimensionless
optical depthz = oix. A dimensionless parametet= 4a/a is defined, where is the material
heat capacity proportionality constant. Then a dimens&sitime variable is defined as ecoit.
Dimensionless absorption and scattering opacities areatbfis, = 0,/0; andcs = 0g/0t,
respectively, such that, + cs = 1. Defining a reference “hohlraum” temperatigg the
dimensionless radiation specific intensity, radiationrgneensity, and material energy density
are given by (z 1) = 1 (x, i t) /aTd, W(z, 1) = [TU (z k1) dp andV (z,1) = [Tm(x,t) /Tr]%,
respectively. Finally, the dimensionless radiation seusaiven byQ (z,1) = S(x,t) /aT3. Using
these definitions, the dimensionless radiative transfeagagn is given by

0 0 _ Ca Cs 1
Gaﬁu&+i)U&MJ%—;V@J%F?N@U+§Q@Uv

—o<z<o  —1<u<1l1, 1>0, (33)
coupled with the dimensionless material energy balancatequgiven by

oV (1)
ot

The boundary and initial conditions for Eq. 33 are given by

=C[W(z1)-V(z1)] , —0o<z<o0 , T>0. (34)

Jim U(zpt) =0, (35)
and
U(zn0)=0, (36)

respectively. The initial condition for Eq. 34 is given by
V(z0)=0 . (37)

American Nuclear Society Topical Meeting in Mathematics &@putations, Avignon, France, 2005 9/13



The Su and Olson non-equilibrium grey radiative transfebfem consists of an initially cold,
homogeneous, infinite, and isotropically scattering medivith an internal radiation source
defined by

Q(sz%m (2+20) —H(z—20)][H (1)~ H (1—To)] | (38)

whereH is the Heaviside step function. The source is thus defineti@ditmensionless spatial
domain—zp < z< zg and is turned on for dimensionless times @ < 1g. Su and Olson obtained
semi-analytic transport solutions for this problem by gppj the Fourier transform to the spatial
variable and the Laplace transform to the time variable [6].

3.2. Su and Olson Problem Numerical Results

In this section, we apply the;PDPy, and angularly adaptive;FDPg diffusion approximations to
the numerical solution of the Su and Olson benchmark prob&rand Olson obtained
semi-analytic results both with and without scattering;present results for the absorption-only
case here. We obtain a solution for the case of the radiatiorce defined by Eq. 38 with

7o = 0.5 andtp = 10 and the dimensionless parameter 4a/a = 1. Our numerical simulations
were performed with an initial timestep Af = 10~° and a timestep control that restricts the
maximum relative change in the radiation energy densityninzzpne during a timestep to 1%.
The spatial zoning was uniform with a zone sizé\at= 0.001, i.e. one-thousandth of a mean
free path. The material properties;(andC,) and the angular approximation parame@njere
lagged in time. We have numerically solved this problem gigie pure P diffusion
approximation, the pure QRIiffusion approximation, and the angularly adaptiye®P
diffusion approximation withy = 0.1 (see Eq. 32). The radiation energy density from these
simulations is plotted in Fig. 1 as a function of space at s\ene values.

The R diffusion solution for the radiation energy density has aoreof approximately 20%

early in time ¢ ~ 0.1— 10) for smallz. The extremely large errors for largeare due to the fact
that the R diffusionapproximation (as opposed to the trueapproximation) propagates
radiation with an infinite velocity [1]. As a result, the ratlon front propagates too quickly.
Similar comments hold regarding the errors in the materiatgy density predicted by thg P
diffusion approximation. Later in time, the radiation andterial approach thermodynamic
equilibrium and the magnitude of the errors decreasesfgigntly. Because the radiative transfer
eqguation asymptotically limits to the ®iffusion approximation at thermodynamic equilibrium,
this is a theoretically predicted result.

Early in time (up tor = 10), the DR solution is significantly more accurate overall than the P
solution (note the plots are on log-log scales). The Bifusion approximation suffers from the
same infinite propagation velocity as thediffusion approximation and hence exhibits large
errors past the wave front. As the radiation and materiatagath thermodynamic equilibrium
later in time ¢ > 10), however, the Dg*solution becomes significantly less accurate than the P
solution. These numerical results confirm the theoretioadiotion described above that the PP
diffusion approximation will be less accurate than thelffusion approximation near
thermodynamic equilibrium.

The adaptive RDPg solution is essentially identical to the pBolution fort < 3.16228 and is
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therefore more accurate than thedelution. Fort = 10, the adaptive £DPy solution is slightly
less accurate than the pBolution but still significantly more accurate overall ththe R

solution. Att = 31.6228, the adaptive;PDPy solution is significantly more accurate overall than
either the R or the DR solution alone. Fotr = 100, the adaptive PDPg solution is slightly less
accurate than the;Bolution but drastically more accurate than theyB8lution.

4. CONCLUSIONS

In this paper, we have developed and applied the douptkffasion approximation for
non-equilibrium grey radiative transfer problems in plageometry. We described how the P
and DR diffusion approximations for non-equilibrium grey radvattransfer in planar geometry
can be combined into a single set of equations with a sing@npeter specifying the local
angular approximation to be used at any point in space arel tiie then prescribed an adaptive
method for choosing the local angular approximation suahttie R angular approximation is
used at and near thermodynamic equilibrium and thg &®ular approximation is used
otherwise.

We compared the accuracy of the @dhd the adaptivePDPg diffusion approximations to the

P1 diffusion approximation using a semi-analytic test probkgeveloped by Su and Olson [6].
We found that the Dgdiffusion approximation is generally more accurate thanRhdiffusion
approximation when the radiation and material are out ofldguwm but is less accurate near
thermodynamic equilibrium. These results motivated theetigpment of an adaptive;FDPy
diffusion approximation in which the local angular approztion used is adaptively determined
at each point in space and time by thermodynamic equilibaansiderations. This adaptive
angular approximation provides improved accuracy for theusd Olson test problem over the P
diffusion approximation during the non-equilibrium phasel essentially the same accuracy near
thermodynamic equilibrium. These numerical conclusidrautd be further verified on a broader
range of problems with more realistic opacities.

The full P, approximation, as opposed to thediffusionapproximation, retains information
regarding the time derivative of the radiation flux. As a tedbe B approximation can give
more accurate results than its corresponding diffusiomagmation [1, 9]. One possible area of
future work is to investigate whether the same holds truenvdeenparing the full DRand the
DPy diffusionangular approximations. Another area of possible futurekwwould be to
investigate whether the accuracy improvements demoasdtkgtthe DR diffusion approximation
compared to the Pdiffusion approximation remain when comparing the fulldhd DR
approximations. If so, the full Dffand R angular approximations could be combined into an
adaptive angular approximation similar to the correspogdiffusion scheme presented in this
paper. In addition, Olson et al [1] have recently proposedrihs approximation which is an
appropriately weighted average of the full & proximation and the;Rliffusion approximation
such that the correct radiation propagation velocity iswted in the optically thin limit. This
P1/3 approximation retains first order accuracy in the equilibridiffusion limit [7]. The same
approach can be used with the full p&proximation and the QRJiffusion approximation to
develop a DR-based approximation with the correct radiation propagatelocity.

The double B angular approximation has seen little use in recent yeaesatleast in part to its
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Figure 1. Radiation energy density as a function of space atseral time values
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perceived inapplicability to multi-dimensional geomesi However, Paveri-Fontana and

Amster [4] theoretically extended the pPBpproximation for steady-state neutronics problems to
multi-dimensional geometries using both a generalizaticthe typical angular moments-based
derivation of the DR approximation as well as a variational analysis. The diffagquation they
derived for the DR approximation differed from the standarg diffusion equation only in the
value of the diffusion coefficent. However, their paper doespresent numerical results to
examine the accuracy of the method. We plan to investig&erthltidimensional extension for
radiative transfer applications.
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